PHYSICAL REVIEW E 75, 061702 (2007)

Molecular dynamics simulations of dipolar fluids in orientationally ordered phases
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It has been established that the strongly interacting dipoles form orientationally ordered liquid phases.
However, most of the computer simulations adapt the point dipole model. In this paper, we report molecular
dynamics simulations of orientationally order phases formed by extended dipoles, where the potential energy
consists of the site-site Lennard-Jones potential and electrostatic contribution of partial charges. The calcula-
tions were performed for a range of densities along an isotherm and for different temperatures at the same
reduced densities. It is found that orientationally ordered phases are present in the wide density regime, the
extended dipole tends to form chains at low density, and the isotropic liquid phase is not seen in the density

regime studied for a specific temperature.
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I. INTRODUCTION

In recent years there has been renewed interest in the
thermodynamic and structural properties of dipolar fluids,
which consist of spherical particles with embedded point di-
poles. In 1916, Born conjectured that dipolar forces alone
can create an orientationally ordered fluid. In the early
1990s, the molecular dynamics (MD) simulations of Wei and
Patey [1,3] for the model of soft spheres with electric point
dipoles embedded at their centers represents the first contri-
bution which shows that the dipolar interaction alone is ca-
pable of bringing about the formation of an orientationally
ordered phase. Moreover, they showed that this phase is a
ferroelectric liquid crystal, becoming a stable ferroelectric
solid at high density. The Monte Carlo (MC) simulations of
Weis et al. [4] for a system of strongly interacting dipolar
hard spheres have revealed that dipolar hard spheres can also
form an orientationally ordered phase. Levesque, Weis, and
co-workers [5-8] also extended their previous MC calcula-
tions to lower densities and temperatures.

The systems of spheres with point dipoles are highly ide-
alized ones. In order to search for the thermodynamic and
molecular parameters that the ferroelectric liquid states are
stable we have to consider more complex and more realistic
systems. Ballenegger and Hansen [9] performed extensive
MD simulations for systems of extended dipoles formed by
two opposite charges +/—¢g separated by a distance d (dipole
moment u=gd) in the liquid state. The strengths and short-
comings of the point dipole model for polar fluids of spheri-
cal molecules are illustrated. The dependence of the pair
structure, dielectric constant and dynamics on the charge
separation is analyzed. However, the ferroelectric phase was
not the focus of their studies. In 1997, Kachel and Gburski
[10,11] performed MD simulations for a model system which
consists of elongated molecules with three embedded inter-
action sites XY, placed on the major axis of the molecule.
The sites Y-X-Y are responsible for the nondipolar intermo-
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lecular interaction of atomic groups (united atoms or
pseudoatoms) located inside the molecule [8]. Their simula-
tions have shown that the simple protoplasts of elongated
molecules can form spatially ordered, chainlike structures.
Subsequently, Patey er al. [12-14] considered fluids of hard
spheres each carrying two parallel point dipoles using
constant-volume Monte Carlo computer simulations, and the
results show that both ferroelectric and antiferroelectric fluid
phases can be stabilized at high density and low temperature
by dipolar interactions alone, if the separation between the
dipoles on each sphere was sufficiently large.

In the present paper, we performed MD simulations for a
model system which consist of rigid polyatomic molecules
with electric extended dipole; the dipole moment was along
the prime axis in the molecular fixed frame. Our molecules
have two effective charges ¢ {0.5,-0.5} located on the z axis
(0.05 and —0.05 nm, respectively) and with the distance d
=0.1 nm between them. In other words, the molecule has the
dipole moment u (u=|p|=qd, g=0.5). In the following sec-
tions, we shall describe the model, computational methods,
and results.

II. COMPUTATIONAL METHODS

The model that we use is a common one for the rigid
polyatomic molecules [15,16] where the intermolecular
forces consist of short range Lennard-Jones (LJ) site-site
forces combined with electrostatic long range forces. The
potential energy for any two sites i,/ is given by

Uy(r) = el (0y/r)'? = (07/r))°] + qig /- (1)

There are two sites (like diatomic molecule) on each mol-
ecule. g;; is the Lennard-Jones well depth and o; is the dis-
tance at the Lennard-Jones minimum, g¢; is the partial atomic
charge, and r is the distance between atomic sites i and j,
which belong to different molecules. The Lennard-Jones pa-
rameters between pairs of different atoms are obtained from
the Lorentz-Berthelodt combination rules, in which &;j values
are based on the geometric mean of ¢; and &; and o;; values
are based on the arithmetic mean between o; and o;. The
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long-range potential is treated by the Ewald sum method
[14]. The equations of motion are solved using a quaternion
leapfrog algorithm.

Our MD calculations were performed at constant tem-
perature essentially as described by Kusalik [15]. We consid-
ered a model system of 256 particles in a cubic box with
periodic boundary conditions. We used the cutoff radius R¢
=L/2, where L is the length of the cubic simulation cell. The
time step Ar=1 fs was employed in all calculations. Typi-
cally, runs were begun with randomly oriented particles
placed on a fcc lattice, and were equilibrated for about
50 000 time steps. Averages were then accumulated over at
least another 100 000 time steps. However, much longer
simulations were carried out in some selected densities in
order to ensure that the equilibrium state was reached. The
standard deviations were estimated by dividing the final
100 000 time steps into ten equal blocks and assuming for
statistical purposes that the block averages constitute inde-
pendent measurements of the physical properties of interest.

The LJ parameters are taken as £=2.05X1072'J, o
=0.315 nm, which is the same for all sites. The partial
charges g {0.5,—0.5} are placed on the z axis (0.05 and
—-0.05 nm); it gives a dipole moment of 8.0109X 10
—30 C m. To facilitate further discussion,l the reduced units
are defined: the LJ reduced temperature, TZJ=kBT/ &1, Where
kg is the Boltzmann constant; the LJ reduced dipole moment,
= (2l e,0°)?=3; the reduced density, p'=No>/V,
where V is the volume and N is the number of particles.
Simulations were carried out for a range of densities,
p"=0.19-0.99 at a constant LJ reduced temperature 7,,=2.
To gauge the effect of temperature we also performed simu-
lation at a fixed density p*=0.82 for three LJ reduced tem-
peratures i.e., T;:Z.O, 2.67, and 3.35 (corresponding to
T7=297.1, 397.1, and 497.1 K), respectively.

III. RESULTS AND DISCUSSION

The possible existence of an ordered phase was monitored
by calculating the usual equilibrium first- and second-rank
orientational order parameters, (P;) and (P,), respectively.
For isotropic fluids both order parameters are zero. For ordi-
nary nonferroelectric nematics (P,)# 0, (P;)=0. For ferro-
electric nematics both (P;) and (P,) must be nonzero. The
instantaneous second-rank order parameter P, was taken to
be the largest eigenvalue of the ordering matrix with the
elements given by

N
Qye=N"2 27 Gririe= 8,9, )
i=1

where n;,, is the 7 component of the unit vector n;=p;/ u;.
The corresponding eigenvector is the instantaneous director
d, and the instantaneous first-rank order parameter P, is de-
fined by

N

P,=N"'>n;-d. (3)

i=1

The equilibrium order parameters are the ensemble averages
of P, and P,.
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FIG. 1. (Color online) (a) The orientational order parameter as
functions of reduced density. The simulations were performed at
constant temperature Tz ;=2 with 256 particles. The statistical de-
viations are estimated and smaller than the size of the symbols used.
(b) The average order parameters as functions of temperature at
p"=0.82. The statistical deviations are estimated and smaller than

the size of the symbols used.

The order parameters as functions of reduced density are
shown in Fig. 1(a). It can be seen that (P;) is significant even
at small reduced density. However, (P,) fluctuates around
0.4. It is apparent that the ferroelectric phases are present in
the whole density range. The dipoles form coiled chains in
the low density regime: this explains partly why the value of
(P,) and (P,) vary significantly when they are plotted as a
function of density. When density goes higher the order pa-
rameter (P,) tends to converge to a higher value around 0.5.
A large variation of the order parameters may also arise from
underlying structure changes [5-8]. When the temperature
increases it is expected that the chain formation would be
less severe. This is confirmed in Fig. 1(b). We observe an
isotropic liquid at 7 ,=3.35 and p"=0.82.

In order to clearly distinguish fluid and solid phases,
we have calculated the mean square displacement
(|rt)=ri0)|*), where r; is the position of molecule i at time
t; for fluids this quantity will continually increase with time
varying linearly at long times according to the Einstein rela-
tionship [10] shown in Eq. (4),

2tD = {|r,(t) = r;(0)|*)/3, 4)

where D is the diffusion coefficient. For solids the mean
square displacement becomes constant rather than continu-
ally increasing with time. The mean square displacements
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FIG. 2. (Color online) (a) The mean square displacement {|r(¢)
—r(0)]?) as a function of time for a range of reduced densities at
T, ;=2 with 256 particles. The statistical deviations are estimated
and smaller than the size of the symbols used. (b) The mean square
displacement {|r(r)—r(0)|?) as a function of time for different tem-
peratures at p“=0.82. The statistical deviations are estimated and
smaller than the size of the symbols used.

were plotted in Fig. 2(a) and it was apparent that the system
is fluid for the densities p*=0.19, 0.38, 0.58, and at p’k
=0.99 the quantity became constant and the system became
solid. In Fig. 2(b) we observed that the mean square dis-
placement is also affected by the temperature. Based on the
results of mean square displacement, we find that the dipole
system forms orientationally ordered liquid and solid phases,
which is similar to the point dipole model except coiled
chains are present in low density and the isotropic phase is
not found at low temperature within the density regime stud-
ied. The solid phase is seen at p“=0.99.

It is instructive to calculate the pair correlation function
g(r) to further understand the interactions between the di-
poles. It is related to the probability of finding the center of a
particle at a given distance from the center of another par-
ticle. For a many body system, one can write generally the
correlation function in the following form:

) =p"(1....r)/p", (5)

where p"(1,...r,) and p refer to the n body density profile
and average density, respectively [17]. The simplest correla-
tion function is the two-body correlation function of two
specific sites on two molecules, for example, between site 1
of molecule 1 and site 2 of molecule 2, which is defined as

g1(r)=N(N - 1)<5(1'—1'1)5(1'—1'2)>/P3 (6)

where r=|r;—r,|. When the distance between r; and r, is
large enough the correlation disappears, so if |rj—r,| —c,

g(r;,r, ...
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FIG. 3. (Color online) (a) The radial pair correlation function
g(r) as a function of r at Tz ,=2; for a law reduced density p"
=0.19. (b) The radial pair correlation function g(r) as a function of
r at TZ ,=2 for a reduced density p“=0.38 in the liquid phase. (c)
The radial pair correlation function g(r) as a function of r at Tz J
=2 for a reduced density p“=0.58. (d) The radial pair correlation
function g(r) as a function of r at Tz]=2 for a reduced density p*
=0.99.

we expect g(r) — 1. In general, for homogeneous systems in
equilibrium, g(r) should depend only on the relative position
of the particles or the difference. The function g(r) carries
information on the structure of the system. For a crystal, it
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FIG. 4. (Color online) (a) The re-orientational correlation func-
tion C() as a function of time at temperature Tz ;=2 for a range of
reduced densities. (b) The re-orientational correlation function C(¢)
as a function of time at reduced density p*=0.82 for different
temperatures.

exhibits a sequence of peaks at positions corresponding to
shells around a given system. For amorphous materials and
liquid, g(r) exhibits its major peak close to the average
atomic separation of neighboring atoms, and oscillates with
less pronounced peaks at larger distances. The magnitude of
the peaks usually decays exponentially with distance as
g(r)—1. In most cases, g(r) vanishes below a certain dis-
tance where atomic repulsion is strong enough to prevent
pairs of atoms from getting too close.

We have calculated the radial distribution functions,
which are shown in Fig. 3. One can see from Figs. 3(a) and
3(b) that the peaks of g,(r) are due to the correlation of
positive and negative charges of two molecules within a
chain where dipoles align head to tail. The sharp peak of
g11(r) is due to the presence of neighboring chains which
minimize the distance between the positive and negative
charges of two separate chains. As a result, in the short
range, chains are placed roughly in a body centered tetrago-
nal (bct) structure [1,2]. In low density, the chain is less
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coiled as compares with the XY, model [7,8]. However, in
the solid phase, the peak of g;,(r) is pushed to a larger dis-
tance because the dipoles are placed on the bct lattice, all
pointing in the same direction; sites 1 and 2 (positive-
negative charges) are much closer to each other.

In addition to these structural properties, we have calcu-
lated the dipole-dipole re-orientational correlation function,
which can be written in terms of the unit vector defined
previously [18]:

=2 (0 - m) S (m(0) - my(0)).

It may help us understand the dynamics of dipoles in vari-
ous phases. From Figs. 4(a) and 4(b) we see that C(r) decays
very slowly at the long time [18]. This is because the orien-
tational correlation is long ranged in the ferroelectric order
phases. However, C(r) decayed sharply with increase of tem-
perature, at T, ,=3.35 (T=497) and the orientational order
disappears which corresponds with the results of order pa-
rameter plots in Fig. 1(b).

IV. CONCLUSIONS

The ferroelectric phases are observed in all the density
range studied at T} ,=2 for the model system of extended
dipoles. At a fixed density, i.e., p"=0.82, the isotropic phase
is seen at Tz ;,=3.35. In the low density regime, some chains
are formed which is rather similar to the point dipole model.
When density goes higher the solid phase is found at p°
=0.99. For systems of point dipoles with the same reduced
temperature and dipole moment, there is a well defined iso-
tropic to ferroelectric liquid crystal phase transition, and no
chain formation is found in low density. Given the impor-
tance and potential application of ferroelectric liquids it is
worthwhile to pursue further studies of realistic polar liquids
with strong polar interactions, which we are carrying out
presently.
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